Feeling Positive? Predicting Emotional Image Similarity from Brain Signals
Ruotsalo, Tuukka; Mäkelä, Kalle; Spapé, Michiel M.; Leiva, Luis A. (2023-10-27)
Publishers version
Ruotsalo, Tuukka
Mäkelä, Kalle
Spapé, Michiel M.
Leiva, Luis A.
27.10.2023
5870-5878
Association for Computer Machinery
School of Engineering Science
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe20231031142078
https://urn.fi/URN:NBN:fi-fe20231031142078
Tiivistelmä
The present notion of visual similarity is based on features derived from image contents. This ignores the users' emotional or affective experiences toward the content, and how users feel when they search for images. Here we consider valence, a positive or negative quantification of affective appraisal, as a novel dimension of image similarity. We report the largest neuroimaging experiment that quantifies and predicts the valence of visual content by using functional near-infrared spectroscopy from brain-computer interfacing. We show that affective similarity can be (1)~decoded directly from brain signals in response to visual stimuli, (2)~utilized for predicting affective image similarity with an average accuracy of 0.58 and an accuracy of 0.65 for high-arousal stimuli, and (3)~effectively used to complement affective similarity estimates of content-based models; for example when fused fNIRS and image rankings the retrieval F-measure@20 is 0.70. Our work opens new research avenues for affective multimedia analysis, retrieval, and user modeling.
Lähdeviite
Tuukka Ruotsalo, Kalle Mäkelä, Michiel M. Spapé, and Luis A. Leiva. 2023. Feeling Positive? Predicting Emotional Image Similarity from Brain Signals. In Proceedings of the 31st ACM International Conference on Multimedia (MM '23). Association for Computing Machinery, New York, NY, USA, 5870–5878. https://doi.org/10.1145/3581783.3613442
Alkuperäinen verkko-osoite
https://dl.acm.org/doi/10.1145/3581783.3613442Julkaisuun liittyvä tutkimusaineisto
https://osf.io/pd9rv/
Kokoelmat
- Tieteelliset julkaisut [1255]