A Deep Learning Integrated Blockchain Framework for Securing Industrial IoT
Aljuhani, Ahamed; Kumar, Prabhat; Alanazi, Rehab; Albalawi, Turki; Taouali, Okba; Islam, A. K. M. Najmul; Kumar, Neeraj; Alazab, Mamoun (2023-09-18)
Huom!
Sisältö avataan julkiseksi: 19.09.2025
Sisältö avataan julkiseksi: 19.09.2025
Post-print / Final draft
Aljuhani, Ahamed
Kumar, Prabhat
Alanazi, Rehab
Albalawi, Turki
Taouali, Okba
Islam, A. K. M. Najmul
Kumar, Neeraj
Alazab, Mamoun
18.09.2023
IEEE Internet of Things Journal
IEEE
School of Engineering Science
Kaikki oikeudet pidätetään.
© 2023 IEEE
© 2023 IEEE
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202402096375
https://urn.fi/URN:NBN:fi-fe202402096375
Tiivistelmä
The Industrial Internet of Things (IIoT) is a collection of interconnected smart sensors and actuators with industrial software tools and applications. IIoT aims to enhance manufacturing and industrial processes by capturing and analyzing real time industrial data. However, the heterogeneous and homogeneous nature of IIoT networks makes them vulnerable to several security threats. As data is transmitted over an insecure communication medium, intruders may intercept communication among different entities and perform malicious activities. Consequently, ensuring the security and privacy of data transmitted in IIoT networks is essential. Motivated by the aforementioned challenges, this paper presents a deep learning integrated blockchain framework for securing IIoT networks. Specifically, first we design a private blockchain based secure communication among the IIoT entities using session-based mutual authentication and key agreement mechanism. In this approach, the proof-of-authority (PoA) consensus mechanism is used for verification of the transactions and block creation based on the voting of miners over the cloud server. Second, we design a novel deep learning-based intrusion detection system that combines Contractive Sparse AutoEncoder (CSAE), Attention-based Bidirectional Long Short Term Memory (ABiLSTM) networks and softmax classifier for cyberattack detection. The practical implementation of blockchain and deep learning techniques proves the effectiveness of the proposed framework.
Lähdeviite
Aljuhani, A., et al. A Deep Learning Integrated Blockchain Framework for Securing Industrial IoT. IEEE Internet of Things Journal. DOI: 10.1109/JIOT.2023.3316669
Kokoelmat
- Tieteelliset julkaisut [1534]