Hyppää sisältöön
    • Suomeksi
    • På svenska
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • LUTPub
  • Kandidaatin tutkintojen opinnäytetyöt
  • Näytä aineisto
  •   Etusivu
  • LUTPub
  • Kandidaatin tutkintojen opinnäytetyöt
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep learning-based detection and identification of power quality in electrical grids

Li, Xinqi (2024)

Katso/Avaa
bachelorsthesis_Li_Xinqi.pdf (1.815Mb)
Lataukset: 


Kandidaatintutkielma

Li, Xinqi
2024

School of Energy Systems, Sähkötekniikka

Kaikki oikeudet pidätetään.
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2024050727274

Tiivistelmä

As power electronic technology advances and distributed generation becomes more prevalent, the grid is increasingly exposed to a variety of intricate power quality disturbances. These disturbances pose significant risks to the safety and efficiency of electricity users, thus placing power quality issues at the forefront of scientific research.

The primary contributions of this thesis include the development of sophisticated models capable of handling both single and composite power quality disturbance signals. The study meticulously examines the origins and risks associated with seven distinct types of single disturbances and five types of composite disturbances. Through simulation, the research generates a comprehensive dataset of these twelve disturbance types, thereby furnishing a robust feature set for subsequent deep learning-based classification and analysis.

The core of the research is anchored in a novel power quality detection framework utilizing deep residual networks. By incorporating residual modules, the study successfully deepens the convolutional neural network architecture, effectively mitigating the issue of network degradation commonly seen in deep classification networks. An extensive exploration into the impact of parameter configurations within these deep residual networks on disturbance classification and identification is conducted. This results in the determination of an optimal network structure tailored for power quality detection. The findings reveal that deep residual networks not only address the degradation problems of existing models but also significantly enhance detection precision, noise immunity, and expedite network convergence, marking a substantial advancement in the field of power quality management.
Kokoelmat
  • Kandidaatin tutkintojen opinnäytetyöt [6559]
LUT-yliopisto
PL 20
53851 Lappeenranta
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetKoulutusohjelmaAvainsanatSyöttöajatYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
LUT-yliopisto
PL 20
53851 Lappeenranta
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste