Design of surrogate models in civil engineering by neural networks
Drahý, Vojtěch; Mařík, Radek; Kälviäinen, Heikki (2024-10-30)
Huom!
Sisältö avataan julkiseksi: 31.10.2026
Sisältö avataan julkiseksi: 31.10.2026
Post-print / Final draft
Drahý, Vojtěch
Mařík, Radek
Kälviäinen, Heikki
30.10.2024
IEEE
School of Engineering Science
Kaikki oikeudet pidätetään.
© 2024 IEEE
© 2024 IEEE
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2024111594349
https://urn.fi/URN:NBN:fi-fe2024111594349
Tiivistelmä
We present a task from the critical infrastructure field in materials engineering. We created a surrogate model for the bridge construction object to determine the material parameters’ values. The work aims to use neural networks to conduct an initial investigation of the task and to find out the aspects of machine learning application. To reduce the computational complexity of the models, we designed specific neural networks whose architecture corresponds to the structure and characteristics of the processed data. Furthermore, we outcome also interpretability and justification of the model’s decision-making. The main contribution of the work is the replacement of the unknown or too complex physical, mathematical description of material objects with a neural network model.
Lähdeviite
Drahý, V. Mařík, R., Kälviäinen, H. (2024). Design of surrogate models in civil engineering by neural networks. In: 2024 9th South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM), Athens, Greece, 2024. pp. 42-49. DOI: 10.1109/SEEDA-CECNSM63478.2024.00017
Kokoelmat
- Tieteelliset julkaisut [1560]