Hyppää sisältöön
    • Suomeksi
    • På svenska
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • LUTPub
  • Tieteelliset julkaisut
  • Näytä aineisto
  •   Etusivu
  • LUTPub
  • Tieteelliset julkaisut
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Extended multi-stream temporal-attention module for skeleton-based human action recognition (HAR)

Mehmood, Faisal; Guo, Xin; Chen, Enqing; Akbar, Muhammad Azeem; Khan, Arif Ali; Ullah, Sami (2024-11-06)

Katso/Avaa
mehmood_et_al_extended_multi-stream_aam.pdf (1.350Mb)
Huom!
Sisältö avataan julkiseksi
: 07.11.2026

Post-print / Final draft

Mehmood, Faisal
Guo, Xin
Chen, Enqing
Akbar, Muhammad Azeem
Khan, Arif Ali
Ullah, Sami
06.11.2024

Computers in Human Behavior

163

Elsevier

School of Engineering Science

https://doi.org/10.1016/j.chb.2024.108482
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2024111995191

Tiivistelmä

Graph convolutional networks (GCNs) are an effective skeleton-based human action recognition (HAR) technique. GCNs enable the specification of CNNs to a non-Euclidean frame that is more flexible. The previous GCN-based models still have a lot of issues: (I) The graph structure is the same for all model layers and input data. GCN model's hierarchical structure and human action recognition input diversity make this a problematic approach; (II) Bone length and orientation are understudied due to their significance and variance in HAR. For this purpose, we introduce an Extended Multi-stream Temporal-attention Adaptive GCN (EMS-TAGCN). By training the network topology of the proposed model either consistently or independently according to the input data, this data-based technique makes graphs more flexible and faster to adapt to a new dataset. A spatial, temporal, and channel attention module helps the adaptive graph convolutional layer focus on joints, frames, and features. Hence, a multi-stream framework representing bones, joints, and their motion enhances recognition accuracy. Our proposed model outperforms the NTU RGBD for CS and CV by 0.6% and 1.4%, respectively, while Kinetics-skeleton Top-1 and Top-5 are 1.4% improved, UCF-101 has improved 2.34% accuracy and HMDB-51 dataset has significantly improved 1.8% accuracy. According to the results, our model has performed better than the other models. Our model consistently outperformed other models, and the results were statistically significant that demonstrating the superiority of our model for the task of HAR and its ability to provide the most reliable and accurate results.

Lähdeviite

Mehmood, F., Guo, X., Chen, E., Akbar, M.A., Khan, A.A. and Ullah, S., 2024. Extended Multi-stream Temporal-attention Module for Skeleton-based Human Action Recognition (HAR). Computers in Human Behavior, vol. 163. https://doi.org/10.1016/j.chb.2024.108482

Alkuperäinen verkko-osoite

https://www.sciencedirect.com/science/article/abs/pii/S0747563224003509?via%3Dihub
Kokoelmat
  • Tieteelliset julkaisut [1590]
LUT-yliopisto
PL 20
53851 Lappeenranta
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetKoulutusohjelmaAvainsanatSyöttöajatYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
LUT-yliopisto
PL 20
53851 Lappeenranta
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste