Hyppää sisältöön
    • Suomeksi
    • På svenska
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • LUTPub
  • Tieteelliset julkaisut
  • Näytä aineisto
  •   Etusivu
  • LUTPub
  • Tieteelliset julkaisut
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Investigation of hybrid modeling and its transferability in building load prediction used for district heating systems

Zhang, Ning; Zhong, Wei; Lin, Xiaojie; Du-Ikonen, Liuliu; Qiu, Tianyue (2024-11-04)

Katso/Avaa
zhang_et_al_investigation_of_aam.pdf (10.69Mb)
Huom!
Sisältö avataan julkiseksi
: 05.11.2026

Post-print / Final draft

Zhang, Ning
Zhong, Wei
Lin, Xiaojie
Du-Ikonen, Liuliu
Qiu, Tianyue
04.11.2024

Engineering Applications of Artificial Intelligence

139

Part A

Elsevier

School of Energy Systems

https://doi.org/10.1016/j.engappai.2024.109544
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2024112296075

Tiivistelmä

In the district heating systems, the historical operation data of the buildings in those areas would be partially or entirely missing. The traditional data-driven model is hard to predict the ground truth results because the historical data is not available for model training. However, utilizing the physics-based methods for load calculation takes a long time to process and encounters low accuracy issues. This paper investigates several hybrid models that integrate the data-driven model and the physics-based models with different fusion methods. The physics-based models calculate envelope load and infiltration load, based on Fourier's law and the grand canonical ensemble theory, respectively. After undergoing load processing, features fusion, and residual connection, the best advanced hybrid models generate 21.35%, 16.35%, and 12.73% better prediction results compared with the data-driven model. Moreover, the advanced hybride models also perform strong transferability across all the data quantity groups. In terms of practical application, the advanced hybrid models could be deployed with effective generalization in limited data scenarios and robust transfer capabilities. The selected best model constructed by hybrid modeling displays the highest performance and saves the total training costs with strong transferability.

Lähdeviite

Zhang, N., Zhong, W., Lin, X., Du-Ikonen, L., Qiu, T. (2024). Investigation of hybrid modeling and its transferability in building load prediction used for district heating systems. Engineering Applications of Artificial Intelligence, vol. 139, Part A. DOI: 10.1016/j.engappai.2024.109544

Kokoelmat
  • Tieteelliset julkaisut [1560]
LUT-yliopisto
PL 20
53851 Lappeenranta
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetKoulutusohjelmaAvainsanatSyöttöajatYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
LUT-yliopisto
PL 20
53851 Lappeenranta
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste