Hyppää sisältöön
    • Suomeksi
    • På svenska
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • LUTPub
  • Tieteelliset julkaisut
  • Näytä aineisto
  •   Etusivu
  • LUTPub
  • Tieteelliset julkaisut
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Secure and Interpretable AI for Smart Healthcare System: A Case Study on Epilepsy Diagnosis Using EEG Signals

Ahmad, Ijaz; Zhu, Mingxing; Li, Guanglin; Javeed, Danish; Kumar, Prabhat; Chen, Shixiong (2024-03-20)

Katso/Avaa
ahmad_et_al_a_secure_and_interpretable_ai_aam.pdf (2.396Mb)
Huom!
Sisältö avataan julkiseksi
: 21.03.2026

Post-print / Final draft

Ahmad, Ijaz
Zhu, Mingxing
Li, Guanglin
Javeed, Danish
Kumar, Prabhat
Chen, Shixiong
20.03.2024

IEEE Journal of Biomedical and Health Informatics

28

6

3236-3247

IEEE

School of Engineering Science

Kaikki oikeudet pidätetään.
© 2024 IEEE
https://doi.org/10.1109/JBHI.2024.3366341
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202501174201

Tiivistelmä

The efficient patient-independent and interpretable framework for electroencephalogram (EEG) epileptic seizure detection (ESD) has informative challenges due to the complex pattern of EEG nature. Automated detection of ES is crucial, while Explainable Artificial Intelligence (XAI) is urgently needed to justify the model detection of epileptic seizures in clinical applications. Therefore, this study implements an XAI-based computer-aided ES detection system (XAI-CAESDs), comprising three major modules, including of feature engineering module, a seizure detection module, and an explainable decision-making process module in a smart healthcare system. To ensure the privacy and security of biomedical EEG data, the blockchain is employed. Initially, the Butterworth filter eliminates various artifacts, and the Dual-Tree Complex Wavelet Transform (DTCWT) decomposes EEG signals, extracting real and imaginary eigenvalue features using frequency domain (FD), time domain (TD) linear feature, and Fractal Dimension (FD) of non-linear features. The best features are selected by using Correlation Coefficients (CC) and Distance Correlation (DC). The selected features are fed into the Stacking Ensemble Classifiers (SEC) for EEG ES detection. Further, the Shapley Additive Explanations (SHAP) method of XAI is implemented to facilitate the interpretation of predictions made by the proposed approach, enabling medical experts to make accurate and understandable decisions. The proposed Stacking Ensemble Classifiers (SEC) in XAI-CAESDs have demonstrated 2% best average accuracy, recall, specificity, and F1-score using the University of California, Irvine, Bonn University, and Boston Children's Hospital-MIT EEG data sets. The proposed framework enhances decision-making and the diagnosis process using biomedical EEG signals and ensures data security in smart healthcare systems.

Lähdeviite

I. Ahmad, M. Zhu, G. Li, D. Javeed, P. Kumar and S. Chen, "A Secure and Interpretable AI for Smart Healthcare System: A Case Study on Epilepsy Diagnosis Using EEG Signals," in IEEE Journal of Biomedical and Health Informatics, vol. 28, no. 6, pp. 3236-3247, June 2024, doi: 10.1109/JBHI.2024.3366341

Alkuperäinen verkko-osoite

https://ieeexplore.ieee.org/document/10476674
Kokoelmat
  • Tieteelliset julkaisut [1590]
LUT-yliopisto
PL 20
53851 Lappeenranta
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetKoulutusohjelmaAvainsanatSyöttöajatYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
LUT-yliopisto
PL 20
53851 Lappeenranta
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste