Hyppää sisältöön
    • Suomeksi
    • På svenska
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • LUTPub
  • Kandidaatin tutkintojen opinnäytetyöt
  • Näytä aineisto
  •   Etusivu
  • LUTPub
  • Kandidaatin tutkintojen opinnäytetyöt
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Theoretical framework of CO₂-to-methanol conversion fundamentals

Apiraktanakon, Kalyakorn (2025)

Katso/Avaa
bachelorsthesis_apiraktanakon_kalyakorn.pdf (1.112Mb)
Lataukset: 


Kandidaatintyö

Apiraktanakon, Kalyakorn
2025

School of Energy Systems, Energiatekniikka

Kaikki oikeudet pidätetään.
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2025051240312

Tiivistelmä

This thesis aims to study the energy required to convert carbon dioxide (CO₂) to methanol in an integrated Carbon Capture Utilization (CCU) plant. CO₂ utilization is one promising way to help reduce greenhouse gas emissions and meet climate targets toward sustainable fuel and chemical production. Methanol conversion was chosen due to methanol’s versatility, the availability of existing infrastructure, and strong market demand.

The thesis starts with a background of the main mechanisms behind CO₂-to-methanol conversion including formate, reverse water-gas shift (RWGS), and trans-COOH pathways. The study continues to explore catalyst and reactor design, focusing on copper-based catalysts and fixed-bed reactors.

The main goal of this thesis is to gain a better understanding of the methanol conversion process in an integrated CCU methanol synthesis system. The study aims to analyze and validate published results on energy consumption. The goal is to offer clarity on the energy consumption. Energy analysis is used as a tool to calculate energy consumption for several key components, including heat exchangers, reactors, and distillation columns. The electricity consumption was also calculated by totaling the compressor energy. The calculation was done using values from the literature review and data sourced from the NIST database. The input data is based on earlier research that used CHEMCAD simulations (a commercial Chemical Engineering Simulation Software). The methodology is validated through benchmark calculations, and the energy demands of phase changes and process inefficiencies are critically assessed.

The findings show that while theoretical energy values are achievable, practical factors such as heat loss, incomplete data, and equipment limitations introduce significant deviations. The study proceed using reverse-engineering reported process data to improve transparency and enhance understanding of the underlying energy balance.
Kokoelmat
  • Kandidaatin tutkintojen opinnäytetyöt [6423]
LUT-yliopisto
PL 20
53851 Lappeenranta
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetKoulutusohjelmaAvainsanatSyöttöajatYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
LUT-yliopisto
PL 20
53851 Lappeenranta
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste