Hyppää sisältöön
    • Suomeksi
    • På svenska
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • LUTPub
  • Väitöskirjat
  • Näytä aineisto
  •   Etusivu
  • LUTPub
  • Väitöskirjat
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards digital twin modeling of a waste heat recovery organic rankine cycle system

Dhanasegaran, Radheesh (2025-06-18)

Katso/Avaa
Radheesh_Dhanasegaran.pdf (46.55Mb)
Lataukset: 


Väitöskirja

Dhanasegaran, Radheesh
18.06.2025
Lappeenranta-Lahti University of Technology LUT

Acta Universitatis Lappeenrantaensis

School of Energy Systems

School of Energy Systems, Energiatekniikka

Kaikki oikeudet pidätetään.
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:ISBN:978-952-412-261-0

Kuvaus

fi=ei tietoa saavutettavuudesta|en=unknown accessibility|

Tiivistelmä

Digitalization and climate change mitigation are key drivers of energy sector research aiming to enhance energy production and management. Industrial energy consumption accounts for nearly one-third of greenhouse gas (GHG) emissions, with 50% of generated energy dissipated as waste heat. Achieving carbon neutrality demands optimizing conventional methods, integrating renewable energy sources, and recovering waste heat. Waste Heat Recovery (WHR) is a practical and cost-effective approach to improving energy efficiency, and the Organic Rankine Cycle (ORC) is a leading technology for converting waste heat to electricity. Digital tools like Digital Twins can increase energy efficiency by enabling cost-effective, flexible, and reliable power plant operation.

This dissertation focuses on developing a digital twin prototype for a micro-scale ORC facility that uses octamethylsiloxane (MDM) as the working fluid to recover high-temperature waste heat. The study begins by characterizing the ORC experimental facility to analyze the cycle and turbogenerator behavior under varying operating conditions. Using an electrothermal analogy, a novel reduced-order transient model of the heat exchangers was developed to model the thermal inertia effects in the heat exchangers and validated against experimental data.

MDM’s sub-atmospheric condensing pressures led to air infiltration, resulting in noncondensable gases (NCGs) on the low-pressure side. The dissertation evaluates the impact of NCGs on condensate tank measurements using an analytical model to quantify measurement uncertainties for pure fluid assumption. It analyzes ways to improve the cycle modeling accuracy to account for the effect of NCGs during operation. Finally, the digital twin prototype was realized using a hybrid approach, integrating transient experimental data (physical twin) with a physics-based dynamic model of ORC components and the analytical model (virtual twin). Furthermore, the dissertation discusses the digital twin’s prediction, predictive maintenance, and control potential through different use cases.
Kokoelmat
  • Väitöskirjat [1121]
LUT-yliopisto
PL 20
53851 Lappeenranta
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetKoulutusohjelmaAvainsanatSyöttöajatYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
LUT-yliopisto
PL 20
53851 Lappeenranta
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste