Hyppää sisältöön
    • Suomeksi
    • På svenska
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • LUTPub
  • Tieteelliset julkaisut
  • Näytä aineisto
  •   Etusivu
  • LUTPub
  • Tieteelliset julkaisut
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Lake Water Level Forecasting Using LSTM and GRU: A Deep Learning Approach

Du, Yuxin; Fan, Jing; Happonen, Ari; Paulraj, Dassan; Tuape, Michael (2024-11-08)

Katso/Avaa
Yuxin_et_al_24_Lake_Water.pdf (2.941Mb)
Huom!
Sisältö avataan julkiseksi
: 09.11.2025

Post-print / Final draft

Du, Yuxin
Fan, Jing
Happonen, Ari
Paulraj, Dassan
Tuape, Michael
08.11.2024

Lecture Notes in Networks and Systems

1156

197-216

Springer, Cham

School of Engineering Science

Kaikki oikeudet pidätetään.
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
http://dx.doi.org/10.1007/978-3-031-73125-9_12
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2025062674506

Tiivistelmä

Artificial Intelligence and Deep Learning-based methods show constant promise in addressing time series forecasting challenges. Lake water level forecasting is an essential & significant environmental and societal impact related time series forecasting problem, with climate change connections. Lakes’ diverse hydrological characteristics make high-performance forecasting models to be lake-specific. Thus, comprehensive experiments are necessary to develop accurate deep learning-based forecasting models. We propose an approach for effective and efficient systematic search conduction for high-performance Deep Learning forecasting models. The method is applicable across various time series forecasting challenges. The research was structured around three experimental groups, each focusing on predicting the water levels of Lake Vesijärvi in Lahti, Finland, over periods of 1 day, 3 days, and 7 days, respectively with Long Short-Term Memory and Gated Recurrent Unit. The results are highly promising. All models achieved a Nash-Sutcliffe Efficiency above 0.95 and a Root Mean Squared Error below 0.025. The best-performing model achieved a Nash-Sutcliffe Efficiency above 0.99 and a Root Mean Squared Error below 0.0011. All evaluation metrics were calculated from testing data without signs of overfitting. This research provides insights into Deep Learning-based time series forecasting and a replicable method to conduct such studies effectively.

Lähdeviite

Du, Y., Fan, J., Paulraj, D., Happonen, A., Tuape, M. (2024). Lake Water Level Forecasting Using LSTM and GRU: A Deep Learning Approach, Lecture Notes in Networks and Systems, Vol 1156, pp. 197-216. DOI: 10.1007/978-3-031-73125-9_12

Kokoelmat
  • Tieteelliset julkaisut [1590]
LUT-yliopisto
PL 20
53851 Lappeenranta
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetKoulutusohjelmaAvainsanatSyöttöajatYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
LUT-yliopisto
PL 20
53851 Lappeenranta
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste