Hyppää sisältöön
    • Suomeksi
    • På svenska
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • LUTPub
  • Diplomityöt ja Pro gradu -tutkielmat
  • Näytä aineisto
  •   Etusivu
  • LUTPub
  • Diplomityöt ja Pro gradu -tutkielmat
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enhancing material selection and inflow efficiency for sustainable equipment manufacturing : a case study

Ramezanpour Khaki, Mehrasa (2025)

Katso/Avaa
Mastersthesis_Ramezanpour_Khaki_Mehrasa.pdf (1.095Mb)
Lataukset: 


Diplomityö

Ramezanpour Khaki, Mehrasa
2025

School of Engineering Science, Tuotantotalous

Kaikki oikeudet pidätetään.
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2025063075604

Tiivistelmä

The purpose of this thesis is to investigate strategies for optimizing material inflows and increasing resource efficiency in equipment manufacturing. The focus of this study is on improving sustainability in supply chain practices, aligning operations with European Sustainability Reporting Standards (ESRS) regulations, specifically the ESRS E5. This study utilizes a case study at The Company to identify key methodologies for tracking material flows, improving data accuracy, and implementing circular economy principles. It will also assess how these strategies can help reduce waste, energy consumption, and emissions while remaining compliant with ESRS requirements. The research will also examine how better resource management can boost supply chain resilience, visibility, and overall sustainability. Semi-structured interviews were used to identify the main factors. The Delphi method was used to determine the main factors using expert opinions, followed by material flow analysis (MFA). In this study, factors Enhancing material selection and inflow efficiency for Sustainable Equipment manufacturing factors include assessment and monitoring, manufacturability, economics, accessibility, and the environment. Also, the MFA method, which is enhanced by CNN and RNN models (with 98% and 96% accuracy, respectively), has been addressed by improving material flow tracking and identifying inefficiencies such as excess inventory due to forecast errors.
Kokoelmat
  • Diplomityöt ja Pro gradu -tutkielmat [14178]
LUT-yliopisto
PL 20
53851 Lappeenranta
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetKoulutusohjelmaAvainsanatSyöttöajatYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
LUT-yliopisto
PL 20
53851 Lappeenranta
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste