Hyppää sisältöön
    • Suomeksi
    • På svenska
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • LUTPub
  • Ammatilliset ja yleistajuiset julkaisut
  • Näytä aineisto
  •   Etusivu
  • LUTPub
  • Ammatilliset ja yleistajuiset julkaisut
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Minimum error contrast enhancement

Vartiainen, Jarkko; Paalanen, Pekka; Kamarainen, Joni-Kristian; Lensu, Lasse; Kälviäinen, Heikki (2006)

Katso/Avaa
TMP.objres.262.pdf (1.766Mb)
Lataukset: 


Vartiainen, Jarkko
Paalanen, Pekka
Kamarainen, Joni-Kristian
Lensu, Lasse
Kälviäinen, Heikki
2006

Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:ISBN:952-214-222-0

Tiivistelmä

Contrast enhancement is an image processing technique where the objective is to preprocess the image so that relevant information can be either seen or further processed more reliably. These techniques are typically applied when the image itself or the device used for image reproduction provides poor visibility and distinguishability of different regions of interest inthe image. In most studies, the emphasis is on the visualization of image data,but this human observer biased goal often results to images which are not optimal for automated processing. The main contribution of this study is to express the contrast enhancement as a mapping from N-channel image data to 1-channel gray-level image, and to devise a projection method which results to an image with minimal error to the correct contrast image. The projection, the minimum-error contrast image, possess the optimal contrast between the regions of interest in the image. The method is based on estimation of the probability density distributions of the region values, and it employs Bayesian inference to establish the minimum error projection.
 
Contrast enhancement is an image processing technique where the objective is to preprocess the image so that relevantinformation can be either seen or further processed more reliably. These techniques are typically applied when the image itself or the device used for image reproduction provides poor visibility and distinguishability of different regionsof interest in the image. In most studies, the emphasis is on the visualizationof image data, but this human observer biased goal often results to images which are not optimal for automated processing. The main contribution of this study is to express the contrast enhancement as a mapping from N-channel image data to1-channel gray-level image, and to devise a projection method which results to an image with minimal error to the correct contrast image. The projection, the minimum-error contrast image, possess the optimal contrast between the regions ofinterest in the image. The method is based on estimation of the probability density distributions of the region values, and it employs Bayesian inference to establish the minimum error projection.
 
Kokoelmat
  • Ammatilliset ja yleistajuiset julkaisut [394]
LUT-yliopisto
PL 20
53851 Lappeenranta
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetKoulutusohjelmaAvainsanatSyöttöajatYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
LUT-yliopisto
PL 20
53851 Lappeenranta
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste